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We generate and measure the versatile vortex linear light bullet, which combines a high-order Bessel beam and
an Airy pulse. This three-dimensional optical wave packet propagates without distortion in any medium, while
carrying an orbital angular momentum. Its non-varying feature in linear propagation is verified by a three-
dimensional measurement. Such a novel versatile linear light bullet can be useful in various applications such
as micromachining.
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Optical wave packet spreading during propagation is an
inherent property of optical waves. Diffraction causes
optical beams to spread in transverse directions, while
material dispersion leads to temporal pulse broadening
in the propagation direction. These effects constrain many
applications such as optical tweezers, high-resolution
imaging, free-space optical communication, etc.[1–3].
In contrast to general optical wave packets that spread

as they propagate, there are certain optical wave packet
shapes that do not spread as they propagate. Such non-
varying wave packets are referred to as localized waves[4].
In nonlinear propagation, propagation-invariant wave
packets, which are called solitons or solitary waves, exist
when the nonlinear effect compensates the dispersion or
diffraction effect[5]. In one-dimensional (1D) propagation,
invariant optical soliton pulses can be formed by balanc-
ing self-phase modulation (SPM) and anomalous group
velocity dispersion (GVD)[6]. Two-dimensional (2D)
spatial solitons have been experimentally demonstrated
as well by balancing the diffraction and the photorefrac-
tive effect[7]. In addition, 2D spatiotemporal solitons have
been experimentally generated in a quadratic nonlinear
medium by a cascading quadratic nonlinear effect[8].
However, three-dimensional (3D) spatiotemporal opti-

cal solitons created by simultaneously balancing a nonlin-
ear effect with dispersion and diffraction phenomena have
not been demonstrated due to an instability issue. Hence,
the generation of 3D nondispersive packets has been a
great experimental challenge for several decades[9]. 3D

optical wave pockets that maintain their shapes during
propagation by balancing dispersion, diffraction, and vari-
ous nonlinear effects are referred to as light bullets[9].
For instance, light bullets are expected to be ideal units
in applications such as optical telecommunications, since
it maintains its peak power through a dispersive and dif-
fractive medium[10].

In linear propagation, 3D linear light bullets, such as X
waves (O waves), have been demonstrated, which are
exact propagation-invariant solutions of a wave equation
for normal (anomalous) dispersion[11,12]. An X wave can be
understood as a superposition of polychromatic Bessel
beams, where the non-diffractive feature is due to the
Bessel beam profile, and the non-dispersive feature is
realized by a controlled balance between the cone angle
dispersion of the Bessel beams and GVD of the material[13].
The X-wave beam can be understood as a coupling
between the spatial and temporal profile of the optical
wave packet designed to counterbalance the temporal
dispersion with the diffraction effect. Since the non-
varying feature of X waves relies on the spatiotemporal
coupling, it is necessary to form a unique X-wave profile
to counterbalance a specific GVD of a medium.

There are novel linear light bullets, which work as local-
ized waves for any combination of GVD and diffraction of
a medium, known as Airy function profiles. An Airy func-
tion is the only available localized analytic solution of a 1D
paraxial wave equation. Therefore, an Airy pulse is the
only non-dispersive analytic pulse solution for linear
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propagation. Non-diffractive beams can be formed based
on Airy profiles such as 1D and 2D Airy beams, which
have been recently demonstrated[14]. In contrast to tradi-
tional non-diffractive beams such as Bessel beams, Airy
beams do not rely on the superposition of conically propa-
gating plane waves. Furthermore, Airy waves exhibit
additional unique properties such as self-acceleration
and self-healing[15].
Airy waves are useful for generating unique linear light

bullets. For example, a special linear light bullet is dem-
onstrated by combining an Airy pulse and a Bessel beam.
This Airy–Bessel wave packet does not require the balance
between the dispersion and the diffraction effects, since
Airy pulses and Bessel beams are impervious to dispersion
and diffraction, respectively. Since Airy–Bessel wave
packets are localized 3D wave packets in any linear media,
they are referred to as versatile linear light bullets[16].
In parallel, optical vortices carrying phase singularities

with orbital angular momentums have developed as a re-
search topic of a recent interest. Optical vortices have be-
come not only of fundamental scientific interest, but they
are also important tools for applications such as optical
tweezers, free-space telecommunications, super-resolution
optical microscopy, etc.[17–19]. The most common intensity
profile of vortex beams is the Laguerre–Gaussian (LG)
beam that can be generated by a holographic filter[20] or
a spiral phase plate[21]. Stable localized optical vortex
solitons that exist in nonlinear media have been demon-
strated as well[22].
In this Letter, we experimentally demonstrate a 3D vor-

tex Airy–Bessel wave packet as a versatile vortex linear
light bullet. The vortex Airy–Bessel wave packet contains
anAiry pulse in time and ahigher-order vortexBessel beam
that carries an orbital angular momentum. It is a 3D linear
light bullet but also carries a phase singularity with an
orbital angular momentum. Its non-varying feature in lin-
ear propagation is verified by the 3D intensity and the
transverse phase profile measurement. Since this wave
packet is invariant with a vortex beam profile for any
material, the wave packet has suitable beam shaping with
orbital angular momentum with potential applications to
laser micromachining[23]. The 3D paraxial wave equation in
linear propagation in a moving reference frame is given as
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where A is an envelope function, while the transverse
Laplacian is ∇2

T ¼ ð ∂2
∂x2 þ ∂2

∂y2Þ. The first term describes dif-
fraction, and the second term accounts for the dispersion,
where k is the wavenumber, and β2 is the GVD coefficient.
Equation (1) admits many versatile propagation-invariant
solutions by combining non-diffractive beams such as
Bessel, Airy, Matheieu beam, etc., with an Airy pulse.
Among such solutions, a propagation-invariant solution
of interest is given in[24]
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Equation (2) shows the electric field profile of the vortex
Airy–Bessel wave packet. In Eq. (2), E0 represents the
peak amplitude, while τ0 and r0 determine the temporal
and the radial width of the wave packet. Since the solution
is separable, τ0 and r0 are not related (that is τ0 and r0 can
take any values). Jlð·Þ and Aið·Þ represent the Bessel
and the Airy function, respectively. The exponential term
expðilϕÞ is the azimuthal phase that describes the vortex
structure; l is an integer number, which is referred to as
the topological charge. When jlj > 0, the solution becomes
a combination of an Airy pulse and a higher-order Bessel
wave packet, which is a vortex beam.

In this experiment, the process of generating a vortex
Airy–Bessel wave packet is shown in Fig. 1. First, an Airy
pulse with a Gaussian beam profile is formed by a pulse
shaping technique[25]. Secondly, the Gaussian beam profile
is converted into a higher-order Bessel beam by applying
an azimuthal and conic phase in sequence[26].

The detailed experimental configuration is shown in
Fig. 2. Positively chirped femtosecond pulses from a
mode-locked fiber laser are divided into two beam paths.
A grating pair is set to compress the chirped pulse into a
Fourier transform-limited (TL) pulse, which serves as a
probe wave packet for 3D profile measurement (the lower
path in Fig. 2). Another beam path (the upper path in
Fig. 2) serves as a pulse shaper. By adding a significant
cubic spectral phase by the spatial light modulator
(SLM) in the pulse shaper, an Airy pulse is formed.

Another SLM is implemented to apply a transverse
spiral phase that converts the initial Gaussian beam into
an LG vortex beam with a topological charge of one. The
LG vortex beam is converted into a higher-order vortex
Bessel beam by an axicon, which is a conical lens[26]. Since
l ¼ 1, the beam profile is the first-order Bessel beam.

Fig. 1. Formation of the vortex Airy–Bessel wave packet.
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The 3D wave packet profile measurement is performed
by overlapping the object wave packet with a time-
delayed probe wave packet on a CCD camera. The 3D in-
tensity profile of the object wave packets are retrieved
based on techniques proposed in Ref. [27].
In order to demonstrate the non-varying feature of the

vortex Airy–Bessel wave packet in linear propagation, a
3D measurement is repeated before and after inserting
a dispersive and diffractive element, a 4-in-long SF11 glass
rod in the path of the object wave packet. The wave
packet experiences a significant dispersion effect, which
corresponds to ∼2.5 characteristic dispersion lengths.
Theoretically, this dispersion effect is able to broaden a
Gaussian pulse with a same duration of the main lobe
of the Airy pulse by a factor of ∼2.5 times [Fig. 3(a)].
By inserting the glass rod, it also provides a significant
diffraction effect to spread the central ring of the
higher-order Bessel beam by a factor of ∼2 in diameter
[Figs. 3(b) and 3(c)].
The measured 3D intensity profile and the azimuthal

phase profile of the vortex Airy–Bessel wave packet are

shown in Fig. 4(a)–4(c). The 3D measurement clearly
shows the Airy pulse profile in time and a higher-order
Bessel beam profile of the wave packet. The measured
transverse phase profile also clearly indicates a vortex pro-
file with a topological charge of one. The measured dura-
tion of the main lobe of the Airy pulse is 147 fs, while the
measured central ring size of the first-order Bessel beam is
211 μm in diameter.

Despite the presence of a medium with strong broaden-
ing effects, the 3D measurements [Fig. 4(d) and 4(e)] re-
veal that the vortex Airy–Bessel wave packet maintained
its 3D profile. The duration of the main lobe is maintained
(∼135 fs), while the central ring radius is again main-
tained (∼194 μm in diameter) after propagation through
the dispersive and diffractive glass rod. The transverse
phase profile [Fig. 4(f)] indicates that there are multiple
phase defects. However, considering the center portion
of the beam, it is clear that azimuthal phase with a
topological charge 1 is preserved. The experiment demon-
strates that the vortex Airy–Bessel wave packet maintains
its localization under the unbalanced dispersion and

Fig. 2. Experimental setup to generate and measure the vortex Airy–Bessel wave packet. AC, Auto-correlation; XC, Cross-correlation.

Fig. 3. Dispersion and diffraction effects of the glass rod on (a) a Gaussian pulse and (b) and (c) a ring beam. The duration of the
Gaussian beam is the same as the main lobe duration of the Airy pulse. The size of the ring is the same as the first ring of the first-order
Bessel beam. The initial ring beam (b) expands ∼2 after the glass rod (c).
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diffraction effects. This verifies that the vortex Airy–
Bessel wave packet serves as a versatile linear light bullet
for any linear medium.
In conclusion, we experimentally demonstrate a vortex

versatile linear light bullet as a 3DvortexAiry–Bessel wave
packet. This wave packet propagates without distortion
while carrying an orbital angular momentum. Its propaga-
tion-invariant nature is experimentally verified by 3D
diagnostics. The vortex Airy–Bessel wave packet works
for any dispersive material as a versatile vortex linear light
bullet, which can bewidely applied for further applications.
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Fig. 4. 3D measurements of the vortex Airy–Bessel wave pocket. The iso-intensity profiles (a) without and (d) with the glass rod.
The sagittal intensity profiles (b) without and (e) with the glass. The transverse phase in the range of ð−π; πÞ profiles (c) without and
(f) with the glass rod.
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